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Abstract

Online convex optimization (OCO) is a powerful algorithmic framework that has

extensive applications in different areas. Regret is a commonly-used measurement

for the performance of algorithms in this framework. Lipschitz continuity of the

cost functions is commonly assumed in order to obtain sublinear regret, that is

to say, this condition is usually necessary for theoretical guarantees for good per-

formances of OCO algorithms. Moreover, strong convexity of cost functions can

sometimes give even better theoretical performance bounds, more specifically, log-

arithmic regret. Recently, researchers from convex optimization proposed the no-

tions of “relative Lipschitz continuity” and “relative strong convexity”. Both of the

notions are generalizations of their classical counterparts. It has been shown that

subgradient methods in the relative setting have performance analogous to their

performance in the classical setting.

In this work, we consider OCO for relative Lipschitz and relative strongly con-

vex functions. We extend the known regret bounds for classical OCO algorithms to

the relative setting. Specifically, we show regret bounds for the follow the regular-

ized leader algorithms and a variant of online mirror descent. Due to the generality

of these methods, these results yield regret bounds for a wide variety of OCO algo-

rithms. Furthermore, we extend the results to algorithms with extra regularization

such as regularized dual averaging.
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Lay Summary

Machine learning involves processing data as a core step. In real life, data some-

times comes in one by one at each time not altogether. This means we need to

process data one piece by one piece at each step and online learning studies this

scenario. Due to its application potential, online learning has gained consider-

able popularity. Numerous algorithms have been designed to solve online learning

problems in practice.

At the same time, along with applications, online learning theory has been de-

veloped. Such theory gives us more insights into understanding existing algorithms

and designing new ones. It also gives performance guarantees, which can help us

facilitate and choose algorithms. In this work we relax a classical presumption to

extend the scope of existing theory. This could shed news lights on new directions

in theory research and help invent novel algorithms.
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Chapter 1

Introduction

An essential part of machine learning and artificial intelligence is data processing.

Data comes in two forms: batch and stream. A batch of data is given at once

at the beginning while a stream of data comes piece by piece. For example, a

dataset is a batch of data and a video can be viewed as a stream of pictures. Online

optimization is the field studying the case when data comes in a stream. This thesis

will focuses on online optimization theory, and more specifically online convex

optimization theory.

Online optimization has gained increasing interest among the machine learning

community. There are two main reasons behind it. First, in many applications, data

naturally come in streams. The epitome of this is real-time application. If we want

to train a real-time predictor, like a predictor forecasting stock price or a detector

capturing pedestrian in surveillance camera without a preprocessed dataset, we

have to get data in real time. Such real-time data comes in streams and we cannot

get future data in advance. Another reason that data may come in a stream is

that sometimes it is computationally expensive or inefficient to process the whole

dataset at one time, so we prefer to process data one by one. For this reason, in

large scale machine learning, online optimization is prevalent.

We start with a brief introduction to the online convex optimization (OCO)

framework. In online convex optimization, at each of many rounds a player has

to pick a point from a convex set while an adversary chooses a convex function

that penalizes the player’s choice. For example, in online advertising, every time
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the algorithm pushes an advertisement to the audience and receives feedback. More

precisely, in each round t ∈ N, the player picks a point xt from a fixed convex set

X ⊆ Rn and an adversary picks a convex function ft possibly depending on xt .

At the end of the round, the player suffers a loss of ft(xt). Besides modeling a

wide range of online learning problems [24], algorithms for OCO are often used

in batch optimization problems due to their low computational cost per iteration.

For example, the widely used stochastic gradient descent (SGD) algorithm can be

viewed as a special case of online gradient descent [12, Chapter 3] and AdaGrad

[8] is a foundational adaptive gradient descent method originally proposed in the

OCO setting. The OCO framework can model a wide range of problems and Hazan

[13, Chapter 1.2] illustrates some motivating examples in details. It is not hard to

notice that measuring the performance of OCO algorithms simply by accumulated

cost is meaningless since the adversary can make it arbitrarily large. Therefore,

the notion of regret was proposed. It is the difference between the cost incurred to

the player and a comparison point z ∈X ⊆Rn (usually with minimum cumulative

cost), that is to say,

RegretT (z) :=
T

∑
t=1

ft(xt)−
T

∑
t=1

ft(z).

If we fix the comparison point to be the point with minimum cumulative cost, regret

measures how much worse the points picked by the algorithm compared to the best

ones. Obviously, the goal of OCO is to minimize the regret by picking the best

points that minimizes the cumulative costs.

1.1 Lipschitzness and Strong Convexity
Before we dive into classical OCO algorithms and their theoretical bounds, we need

to mention several mathematical concepts. First we mention the use of some math-

ematical notations. Throughout this thesis, Rn denotes an n-dimensional real vec-

tor space endowed with an inner-product 〈·, ·〉 and norm ‖·‖. We take X ⊆ Rn

to be a fixed closed convex set. The dual norm of ‖·‖ is defined by ‖x‖∗ :=

supy∈Rn : ‖y‖≤1〈x,y〉 for each x ∈ Rn. The normal cone of X at a point x ∈X is

the set NX (x) := {a ∈ Rn : 〈a,z− x〉 ≤ 0 for all z ∈X }.
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Up to this point, the only constraint on the cost functions is convexity. How-

ever, generally OCO algorithms cannot have good performance guarantees over

convex functions without extra assumptions. Let’s consider the offline setting,

where Lipschitz smoothness and strong convexity are two extra conditions we put

on the objective function other than convexity to obtain convergence rate. Defini-

tions of the two are stated below respectively.

Definition 1 (Lipschitz smoothness). A differentiable function f : X → R is L-

Lipschitz smooth with respect to ‖·‖ on X ′ ⊆X for some L > 0 if

|∇ f (x)−∇ f (y)| ≤ L‖x− y‖, ∀x,y ∈X ′.

By convention, ∇ f (x) denotes the gradient of f at x.

Definition 2 (Strong convexity). A differentiable convex function f : X → R is

M-strongly convex with respect to ‖·‖ on X ′ ⊆X for some M > 0 if

f (y)≥ f (x)+ 〈∇ f (x),y− x〉+ M
2
‖y− x‖2, ∀x,y ∈X ′.

If we combine convexity and Lipschitz smoothness, we get the following lemma

[6, Lemma 3.4].

Lemma 1 (The Descent Lemma). If f is L-Lipschitz smooth on X ′ ⊆X , then for

any x,y ∈X ′, one has

f (y)≤ f (x)+ 〈∇ f (x),y− x〉+ L
2
‖y− x‖2.

Therefore, for differentiable convex functions, Lipschitz-smoothness gives a

quadratic upper bound and strong convexity gives a quadratic lower bound. Both

bounds, especially the lower bound, constrain the behaviour of the function in a

desirable way. With such constraints, cost functions behave nicely and OCO algo-

rithms can achieve sublinear regret.

The above definitions applied to functions that are continuously differentiable.

For the sake of bookkeeping, in the later text when we take about differentiablity,

we refer to continuous differentiability. Sometimes in offline convex optimization,
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we assume the differentiability of the objective function. On the other hand, such

assumption is rare in the online setting. Indeed, differentiability is typically not

assumed of cost functions in analysis of OCO algorithms due to its generality. For

any convex function f : X → R and any x ∈ Rn, a vector g ∈ Rn is a subgradient
of f at x if g satisfies the subgradient inequality

f (z)≥ f (x)+ 〈g,x− z〉, ∀z ∈ Rn. (1.1)

We denote by ∂ f (x) the set of all subgradients of f at x, called the subdifferential
of f at x. For differentiable functions, the subdifferential at a certain point con-

tains exactly one element, the gradient of the function at that point, subgradient is

a more general concept than gradient and it can be seen as a proper surrogate for

gradients of non-differentiable functions. Naturally, the definition of strong con-

vexity can be extended to non-differentiable functions by replacing the gradient

with a subgradient.

Definition 3 (Strong convexity for non-differentiable function). A convex function

f : X → R is M-strongly convex with respect to ‖·‖ on X ′ ⊆X for some M > 0

if

f (y)≥ f (x)+ 〈g,y− x〉+ M
2
‖y− x‖2, ∀x,y ∈X ′,∀g ∈ ∂ f (x).

Again, this definition gives a quadratic lower bound for the function. On the

other hand, the upper bound given by the Lipschitz smooth condition does not hold

any more. Instead, we have the Lipschitz continuity condition.

Definition 4 (Lipschitz continuity). A function f : X → R is L-Lipschitz continu-

ous with respect to ‖·‖ on X ′ ⊆X for some L > 0 if

| f (x)− f (y)| ≤ L‖x− y‖, ∀x,y ∈X ′.

The definition means the growth of the function value is upper bounded by a

constant multiplying the distance measured by a norm. More intuitively, we can

say the function value will not change too abruptly and this property can be used

to derive desirable regret bounds. Additionally, if f is convex, then the above

4



definition implies1 that ‖g‖∗ ≤ L for all x ∈X and all g ∈ ∂ f (x), equivalently, the

subgradient of the function is upper bounded by a constant [24, Lemma 2.6].

1.2 Follow The Regularized Leader
In this section we begin to introduce OCO algorithms. Since the cost functions are

revealed after each round, a natural and simple algorithm will just try to minimize

the cost incurred in all past rounds. This algorithm is called follow the leader (FTL).

More specifically, in each round, FTL selects the point satisfying

xt = argmin
x∈X

t−1

∑
i=1

fi(x). (1.2)

FTL uses the past accumulative costs to estimate the accumulative cost up to this

round, so it implicitly assumes that the cost function in this round does not vary too

much from the ones from the previous functions. However, this assumption may

not hold. Here we give a counter example.

Example 1. Let X = [−1,1] and ft(x) = ztx+1. Define losses

zt =


−0.5 t = 1,

1 t even,

−1 t odd.

FTL suffers cost at least 2T −1.5 but the point x = 0 suffers cost T , thus the regret

between points picked by FTL and the best points are at least T −1.5.

At this point, it is not clear how good the regret T − 1.5 is. Later we will

prove that regret in the order of O(T ) is considered to be bad in OCO for linear

cost functions with bounded coefficients since some algorithms can achieve strictly

better regret with similar computation cost. The weakness of FTL is the explicit

assumption that the cost functions are rather “stable”, which means they do not

change too much from round to round. Therefore, a fix of FTL is to try to stabilize

1On the boundary of X this implication is not as strong: we can only guarantee the existence of
one subgradient with small norm. For our purposes this will not be of fundamental importance. For
a more precise statement see [4, §5.3]
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these cost functions by adding a convex regularizer R. We assume there exists a

minimizer for R. The resulting algorithm is called follow the regularized leader

(FTRL), described as below.

Algorithm 1 Follow the Regularized Leader (FTRL) Algorithm

Compute x1 ∈ argminx∈X R(x)
Set F0 := 0
for t = 1,2, . . . do

Observe ft and suffer cost ft(xt)
Set Ft := Ft−1 + ft = ∑

t
i=1 fi

Compute xt+1 ∈ argminx∈X
(
Ft(x)+ 1

ηt
R(x)

)
We start to analyse regret of FTRL. Because the main goal of this section is

to give readers a taste of OCO algorithms, we will prove the regret upper bound

in the simplest setting. To be more specific, we will assume X = Rn and all

cost functions are linear with bounded coefficients. This is called online linear

optimization (OLO). Formally, this assumption means ft(x) = 〈zt ,x〉 and ‖zt‖ ≤ L

for all t ≥ 1. Furthermore, we assume that the time horizon T is known so we can

use a constant predetermined step size. In Chapter 3 we will prove a much more

general result in a powerful proof framework.

The first step of the analysis of FTRL is to relate the regret to the cumulative

difference between the cost of xt and xt+1. The following lemma is called the FTRL

lemma.

Lemma 2 (FTRL Lemma). Let x1,x2, · · · be the sequence of points produced by

FTRL. Then, for all z ∈X we have

RegretT (z) =
T

∑
t=1

( ft(xt)− ft(z))≤
1

ηT
R(z)+

T

∑
t=1

( ft(xt)− ft(xt+1)).

We will prove a stronger version of this lemma called strong FTRL lemma later.

For a simpler proof of this lemma and more details about the difference between

the stronger version and the standard version, we refer readers to McMahan [18,

Lemma 13]. If we choose the regularizer to be R(x) = 1
2‖x‖

2
2 and set step size

ηt = η , we have the following regret bound for FTRL.
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Theorem 3. Consider running FTRL on a sequence of linear functions ft(x) =

〈zt ,x〉 for all t with X = Rn, and with the regularizer R(x) = 1
2‖x‖

2
2 and step size

ηt = η for t ≥ 1. Then for all z ∈X , we have

RegretT (z)≤
1

2η
‖z‖2

2 +η

T

∑
t=1
‖zt‖2

2,

In particular, if ‖z‖2 ≤ K and each ft is L-Lipschiz continuous, then by setting

η = K
L
√

2T
, we obtain

RegretT (z)≤ KL
√

2T .

Proof. The proof follows Shalev-Shwartz [24, Theorem 2.4]. By first-order opti-

mality condition, we can compute xt+1 by

0 =
t

∑
i=1

zi +
1
η

xt+1.

This is equivalent to

wt+1 =−η

t

∑
i=1

zi = wt −ηzt . (1.3)

Using Lemma 2 and (1.3), we have

RegretT (z)≤
1
η

R(z)+
T

∑
t=1

( ft(xt)− ft(xt+1)),

≤ 1
2η
‖z‖2

2 +
T

∑
t=1
〈xt − xt+1,zt〉,

=
1

2η
‖z‖2

2 +η

T

∑
t=1
‖zt‖2

2.

The first equality comes from the definition of R and the second inequality is the

subgradient inequality. Lipschitz continuity implies ‖zt‖2
2 ≤ L2 for every t ≥ 1. By

setting the step size η to be K
L
√

2T
and using ‖z‖2 ≤ K, we get the desired bound as

7



below.

RegretT (z)≤
1

2η
K2 +η

T

∑
t=1
‖zt‖2

2,

= KL
√

2T .

With some hindsight, we realize that the regret obtained by FTL in Example

1 is indeed suboptimal and FTRL is superior in this case. Actually, this sublinear

O(
√

T ) regret matches the lower bound of OLO by a constant factor [22, Theorem

5]. Therefore, FTRL is optimal for linear cost functions. Since OLO is incorporated

in OCO, this O(
√

T ) is also lower bound for OCO. Chapter 3 shows the O(
√

T )

regret holds for FTRL in a more general setting than OLO (relative Lipschitz con-

tinuous cost functions), so the optimality of FTRL holds in this more general setting

as well.

If in addition we assume that all the cost functions are strongly convex, we will

have regret bound O(logT ) in terms of rounds T [14]. Again the details and the

proof will be deferred to Chapter 3.2 when more general results are proved.

1.3 Mirror Descent
The mirror descent algorithm is a generalization of the classical gradient descent

method that was first proposed by Nemirovsky and Yudin [20] with a modern treat-

ment first given by Beck and Teboulle [3]. Moreover, the algorithm almost seam-

lessly fits into the OCO setting (see [12]), and its online version is known as online

mirror descent (OMD). Throughout this thesis we follow Bubeck [6]’s notations

and assumptions on mirror descent. We assume that we have a mirror map for

X , that is, a differentiable strictly-convex function Φ : D → R for X such that

the gradient of Φ diverges on the boundary of D , that is, limx→∂D‖∇Φ(x)‖2 = ∞

and ∂D :=D \D◦. Here D◦ denotes the interior of D . These presumed conditions

of the mirror map gives a unique solution to the projection step of MD (last step in

Algorithm 2). The mirror map function in OMD is sometimes called a regularizer

function, just as in FTRL. OMD is described in Algorithm 2.

8



Algorithm 2 Online Mirror Descent
Require: An initial iterate x1 ∈X .

for t = 1,2, . . . do
Observe ft and suffer cost ft(xt)
Compute gt ∈ ∂ ft(xt)
x̂t := ∇Φ(xt)
ŷt+1 := x̂t −ηtgt

yt+1 := ∇Φ∗(ŷt+1)
Compute xt+1 ∈ argminx∈X Φ(x)−Φ(yt+1)−〈∇Φ(yt+1),x− yt+1〉

The notation ∇Φ∗ denotes the convex conjugate of ∇Φ. Formally, for a func-

tion f : X → R, the convex conjugate f ∗(y) = supx∈X {〈y,x〉− f (x)} for every

y ∈X ∗, where X ∗ is the dual space of X .

The motivation for mirror descent comes from looking at the gradient of a func-

tion f as the representation2 of its derivative. The derivative is a functional on Rn

because it is a linear function that receives a direction d ∈ Rn and evaluates the

derivative in the direction d). If we were to perform gradient descent in a space

where such a representation—the gradients—might not exist, such as in some Ba-

nach spaces, the gradient step would not make sense: it tries to subtract from a

point in the “primal space” Rn an element from the the space of functionals on

Rn, known as the dual space of Rn. A way to generalize gradient descent for it to

make sense from this perspective is to have a strictly convex function Φ : Rn→ R,

a mirror map, to bridge the primal and dual spaces. As an example, note that by

defining Φ := 1
2‖·‖

2
2 we have ∇Φ(x) = x for any x ∈ Rn. In this case, the classical

gradient step can be seen as subtracting the derivative of the objective function f

from the derivative of the mirror map at the current iterate. Interestingly, we may

pick mirror maps different from the squared Euclidean norm, yielding different

algorithms with different performance guarantees. Thus, even though we do not

actually need to worry about derivative representation in Rn, this general perspec-

tive on gradient descent is useful in the design of efficient optimization methods.

For a more detailed discussion of mirror descent and its intuition, see Bubeck [6].

OMD describes many algorithms. For example, if we take the mirror map to be

2Representation given by the Riesz Representation Theorem.
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half of the `2 norm, both ∇Φ and ∇∗Φ are the identity function and the projection

step becomes

xt+1 ∈ argmin
x∈X

Φ(x)−Φ(yt+1)−〈∇Φ(yt+1),x− yt+1〉,

= argmin
x∈X

1
2
‖x‖2

2−
1
2
‖xt −ηtgt‖2

2−〈xt −ηtgt ,x− (xt −ηtgt)〉,

= argmin
x∈X

1
2
‖x− (xt −ηtgt)‖2

2.

Then OMD recovers the classical projected subgradient descent method. To see

more relevant applications of OMD, read Hazan [13, Chapter 5.4] and Bubeck [6,

Chapter 4.3]. Similar to FTRL, classical results shows that if the cost functions

ft are Lipchitz continuous and we pick the mirror map to be strongly convex, we

have O(
√

T ) regret in terms of rounds T [13, Theorem 5.6], [6, Theorem 4.2]. In

Chapter 3.2, we will prove a more general result on a variant version of OMD.
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Chapter 2

Related Work

In the previous chapter, we introduced some classical OCO algorithms and their

regret bounds. Despite that the classical regret bounds can be applied to vari-

ous popular cost functions, it necessitates the Lipschitz continuity assumption of

the cost functions. However, some cost functions may not satisfy the Lipschitz

continuity condition, for example, the loss function for support vector machines,

f (x) = max{0,1− yixT wi}+ λ

2 ‖x‖
2
2. The squared `2 norm term is not Lipschitz

continuous thus classical regret bounds do not apply to it. This problem motivates

a line of work that relax the Lipschitzness condition in both offline and online con-

vex optimization settings. In this chapter we will talk about these work. Before

diving into details, we need to familiarize ourselves with an important mathemati-

cal notion, the Bregman divergence.

Definition 5. Let R : D → R be a convex function such that it is differentiable

in Do := intD and such that we have X ⊆ Do. The Bregman divergence (with

respect to R) is given by

DR(x,y) := R(x)−R(y)−〈∇R(y),x− y〉, ∀x ∈D ,y ∈Do.

More intuitively, the Bregman divergence measures the distance between two

points through the lens of some reference function R. One nuance of this definition

is that it is not symmetric, in general, DR(x,y) 6= DR(y,x). A noteworthy example

of Bregman divergence is the `2 distance between two points DR(x,y) = 1
2‖x−y‖2

2
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if we take R to be 1
2‖·‖

2
2. An interesting and useful identity regarding Bregman

divergences, sometimes called the three-point identity [6], is

Lemma 4 (Three-point identity).

DR(x,y)+DR(z,x)−DR(z,y) = 〈∇R(x)−∇R(y),x− z〉, ∀z ∈D ,∀x,y ∈Do.

This identity can be simply proved by expanding the left side by the definition

of Bregman divergence.

We collect here some additional notation and assumptions used throughout the

thesis.1 First, X ⊆Rn denotes a closed convex set and { ft}t≥1 denotes a sequence

of convex functions such that ft : X → R is subdifferentiable2 on X for each t ≥
1. We denote by {ηt}t≥0 a sequence of scalars such that ηt ≥ ηt+1 > 0 for each t ≥
0. Moreover, D ⊆ Rn denotes a convex set with non-empty interior D◦ := int(D)

such that X ⊆ D◦. This latter set will be the domain of the regularizer for FTRL

and of the mirror map for OMD. Namely, in Chapter 3 we denote by R : D→R the

regularizer of FTRL, a convex function which is differentiable on D◦. In Chapter 4

we denote by Φ : D → R the mirror map of online mirror descent.

2.1 A New Descent Lemma
We start by recalling the convex optimization problem with composite objective.

Given a closed convex set C with nonempty interior, the problem is

inf{Φ(x) := f (x)+g(x) : x ∈C},

where f and g are proper, convex and lower semicontinuous, with g continuously

differentiable on the interior of its domain. Here f is called the proximal function.

It can be seen as a regularizer that we want to minimize directly, for example,

the `2 norm. The proximal gradient descent (PG) method is a classical first-order

1The only exception is Lemma 5, which does not need convexity or differentiability of any of the
functions.

2This is not too restrictive since convex functions are subdifferentiable on the relative interior of
their domains [23, Theorem 23.4].
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algorithm for solving this problem, the main step is

xt+1 = argmin{g(xt)+ 〈∇g(xt),u− xt〉+
1

2λ
‖u− xt‖2 + f (u) : u ∈C},

where λ > 0 is the step size here. This key step tries to minimize a quadratic

upper bound (for λ < 1/L where L is the Lipschitz smoothness parameter) of the

differentiable function g plus the proximal function f . It is not hard for us to

relate this step to the descent lemma (1) since it also provides a quadratic upper

bound. Actually the descent lemma is a crucial pillar in convergence analysis of

PG. Bauschke et al. [2] took a new look at PG and relaxed the descent lemma to

the following assumption. Let f be a convex and h be a Legendre function, which

means h is essentially smooth and strictly convex in the interior of its domain. Let

L > 0, we require

f (y)≤ f (x)+ 〈∇ f (x),y− x〉+LDh(y,x). (2.1)

This new assumption substitutes the norm in the classical descent lemma with the

Bregman divergence. As we discussed before, the Bregman divergence can be seen

as a generalization of `2 norm, so we can see this assumption as a generalization

of the classical descent lemma. They proposed the NoLips algorithm to solve the

composite objective convex optimization problem. The main step is

xt+1 = argmin{g(xt)+ 〈∇g(xt),u− xt〉+
1

2λ
Dh(u,xt)+ f (u) : u ∈C},

where h is the chosen Legendre function. Similarly, the norm in classical PG got

replaced by the Bregman divergence. Therefore, NoLips is a generalization of

the classical PG. Convergence analysis of classical PG needs the classical descent

lemma. This further requires Lipschitz smoothness of the differentiable part g.

Analogously, convergence analysis of NoLips onlys needs the new descent condi-

tion (2.1). Therefore, we are granted the freedom to choose a Legendre function h

to satisfy (2.1) in order to make NoLips converge fast. This makes NoLips flexible

and extends the classical convergence bound for PG like algorithms.

It is worth mentioning that Van Nguyen [25] independently developed similar

ideas for analyzing the convergence of a Bregman proximal gradient applied to the
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convex composite model in Banach spaces. Bolte et al. [5] extended the framework

of Bauschke et al. [2] to the non-convex setting.

2.2 Relative Lipschitzness
Along this direction, Lu et al. [16] further formalized and simplified this “beyond

Lipschitz smoothness” idea and proposed the notion of relative Lipschitz smooth-

ness.

Definition 6 (Relative Lipschitz smoothness [16]). A differentiable convex function

f : X → R is L-Lipschitz smooth relative to R for some L≥ 0 if

f (y)≤ f (x)+ 〈∇ f (x),y− x〉+LDR(y,x), ∀y,x ∈X ,∀g ∈ ∂ f (x). (2.2)

This relative Lipschitz smoothness notion is essentially equivalent to the con-

dition (2.1) in Bauschke et al. [2], but Bauschke et al. [2] has the extra requirement

that the reference function needs to be Legendre. Following the same logic, they

also proposed the definition of relative strong convexity.

Definition 7 (Relative strong convexity [16]). A convex function f : X → R is

M-strongly convex relative to R if

f (y)≥ f (x)+ 〈g,y− x〉+MDR(y,x), ∀y,x ∈X ,∀g ∈ ∂ f (x). (2.3)

Proposition 1.1 and Proposition 1.2 in Lu et al. [16] categorize equivalent def-

initions for relative Lipschitz smoothness/strong convexity and present some of

their properties. Lu et al. [16] reproved the linear convergence of NoLips (without

the proximal function) in a simpler style, where they called the algorithm primal

gradient descent. They also proved the linear convergence of dual averaging (DA)

under the relative Lipschitz smooth and relative strong convexity condition, an al-

gorithm invented by Nesterov [21]. DA uses the averaged linearization over past

iterates as an estimate to the current function. We will formally introduce it in

Chapter 3.1.1. Application-wise, Lu et al. [16] proved their new theory can be

used to solve the D-optimal design problem. Later, Mukkamala and Ochs [19]

modified the NoLips algorithm by adding momentum to it and used it to solve the
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non-convex matrix factorization problem.

Aside from the above work, in a related paper Lu [15] extended this “beyond

Lipschitzness” work to the non-differentiable convex optimization. He proposed

the notion of relative Lipschitz continuity, which can be seen as a generalization of

its classical counterpart.

Definition 8 (Relative Lipschitz continuity). A convex function f : X → R is L-
Lipschitz continuous relative to R if

‖g‖∗ ≤
L
√

2DR(y,x)
‖y− x‖

, ∀x,y ∈X with x 6= y,∀g ∈ ∂ f (x).

Again, if we pick the norm to be `2 norm and R to be 1
2‖·‖, this relative Lips-

chitz continuity recovers the classical definition. A drawback of this definition is it

is norm dependent, thus, we proposed a slight modification of the definition.

Definition 9 (modified Relative Lipschitz continuity). A convex function f : X →
R is L-Lipschitz continuous relative to R if

〈g,x− y〉 ≤ L
√

2DR(y,x), ∀x,y ∈X . (2.4)

By definition of dual norm, 〈g,x− y〉 ≤ ‖g‖∗‖y− x‖ for all g ∈ ∂ f (x), so this

modified definition is more general. When we mention relative Lipschitz continu-

ity in the later text, we mean this modified version. Lu [15] proved the O(1/
√

T )

convergence rate of deterministic and stochastic mirror descent, given that the ob-

jective function is relative Lipschitz continuous to the mirror map. A faster O(1/T )

convergence rate was also proved if in addition the objective fucntion satisfies rel-

ative strong convexity with respect to the mirror map.

2.3 Other Related Work
Antonakopoulos et al. [1] generalized the Lipschitz continuity condition from the

perspective of Riemannian geometry. They proposed the notion of Riemannian

Lipschitz-continuity (RLC).

Definition 10. We say that f : X → R is Riemann-Lipschitz continuous relative
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to a Riemann metric g if

| f (y)− f (x)| ≤ Gdistg(x,y) for some G≥ 0 and all x,y ∈X ,

where distg(x,y) is the Riemann distance between x and y induced by the Riemann

metric g.

We note that RLC in Antonakopoulos et al. [1] is closely related to relative Lip-

schitz continuity. If we assume differentiablity of the function, by definition of RLC

and Cauchy-Schwartz inequality, RLC implies relative Lipschitz continuity. We do

not know if the reverse direction holds or the relationships of these two notions in

the non-differentiable case due to the hardness to find a proper Riemannian metric

or compute the Riemannian distance. In the paper, they analyzed how OCO algo-

rithms perform in this setting and showed O(
√

T ) regret bounds for both FTRL and

OMD with RLC and differentiable cost functions in the online settings.

More recently, Gao et al. [10] analysed the coordinate descent method with

composite Lipschitz smooth objectives and Grimmer [11] showed how projected

subgradient descent method enjoys a O(1/
√

T ) convergence rate without Lipschitz

continuity if one has some control on the norm of the subgradients. Maddison et al.

[17] relaxed the Lipschitz smoothness condition by proposing a new family of

optimization methods motivated from physics, to be more specific, the conformal

Hamiltonian dynamics.
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Chapter 3

Follow the Regularized Leader

In this section we prove regret bounds of relative Lipschitz cost functions. Be-

sides that, we also prove logarithmic regret if the cost functions are additionally

relatively strongly convex and extend such results to the composite cost functions

setting (defined in Chapter 2.1). These results give generalized regret bounds in

OCO. Before giving details of our theorems and proofs, we want to introduce the

Strong FTRL Lemma, which along with its variants will be a pillar in our regret

analysis.

Lemma 5. (Strong FTRL Lemma [18]) Let { ft}t≥1 be a sequence of functions such

that ft : X →R for each t ≥ 1. Let {ηt}t≥1 be a positive non-increasing sequence.

Let R : X →R be such that {xt}t≥1 given as in Algorithm 1 is properly defined. If

Ft : X → R is defined as in Algorithm 1 for each t ≥ 1, then,

RegretT (z)≤
T

∑
t=0

(
1
ηt
− 1

ηt−1

)
(R(z)−R(xt))+

T

∑
t=1

(
Ht(xt)−Ht(xt+1)

)
∀T > 0,

where η0 := 1, 1
η−1

:= 0, x0 := x1, and Ht := Ft +
1
ηt

R for each t ≥ 1.

Below we give the proof of this lemma. We also show how the lemma can be

used for the composite setting. For further discussions on the lemma and on FTRL,

see the thorough survey of McMahan [18].

Proof of Lemma 5. Fix T > 0. Define rt := ( 1
ηt
− 1

ηt−1
)R for each t ≥ 0 (recall that

η0 := 1 and 1/η−1 := 0), define ht := rt + ft for each t ≥ 1, and set h0 := r0. In this
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way, we have

t

∑
i=0

ht =
t

∑
i=1

ft +
t

∑
i=0

rt =
t

∑
i=1

ft +
1
ηt

R = Ht , ∀t ≥ 0.

In particular,

xt ∈ argmin
x∈X

Ht−1(x) = argmin
x∈X

t−1

∑
i=0

hi(x), ∀t ≥ 0. (3.1)

Let us now bound the regret of the points x1, . . . ,xT with respect to the functions

h1, . . . ,hT and to a comparison point z ∈X (plus a −h0(z) term):

T

∑
t=1

(ht(xt)−ht(z))−h0(z) =
T

∑
t=1

ht(xt)−HT (z) =
T

∑
t=1

(Ht(xt)−Ht−1(xt))−HT (z)

(3.1)
≤

T

∑
t=1

(Ht(xt)−Ht−1(xt))−HT (xT+1)

=
T

∑
t=1

(Ht(xt)−Ht(xt+1))−H0(x1),

where in the last equation we just re-indexed the summation, placing HT+1(xT+1)

inside the summation, and leaving H0(x1) out. Re-arranging the terms and using

H0 = h0 = r0 and x0 = x1 yield

T

∑
t=1

( ft(xt)+ rt(xt)− ft(z)− rt(z)) =
T

∑
t=1

(ht(xt)−ht(z))

≤ r0(z)− r0(x0)+
T

∑
t=1

(Ht(xt)−Ht(xt+1)),

which implies

RegretT (z) =
T

∑
t=1

( ft(xt)− ft(z))≤
T

∑
t=0

(rt(z)− rt(xt))+
T

∑
t=1

(Ht(xt)−Ht(xt+1)).
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Since rt = ( 1
ηt
− 1

ηt−1
)R for all t ≥ 0, we have

T

∑
t=0

(rt(z)− rt(xt)) =
T

∑
t=0

( 1
ηt
− 1

ηt−1

)
(R(z)−R(xt)).

For the composite setting with an extra convex regularizer Ψ (see Chapter 3.3

for details), we modify the definition of rt for t ≥ 1 (maintaining the definition of

r0) in the above proof for

rt :=
( 1

ηt
− 1

ηt−1

)
R+Ψ, ∀t ≥ 1.

In this case, we have

Ht =
t

∑
i=1

ft +
t

∑
i=0

rt =
t

∑
i=1

ft +
1
ηt

R+ tΨ.

Proceeding in the same way as in the proof of Lemma 5, we get

T

∑
t=1

( ft(xt)− f (z))≤
T

∑
t=0

( 1
ηt
− 1

ηt−1

)
(R(z)−R(xt))

+
T

∑
t=1

(Ψ(z)−Ψ(xt))+
T

∑
t=1

(Ht(xt)−Ht(xt+1)),

Re-arranging yields

RegretΨT (z)≤
T

∑
t=0

( 1
ηt
− 1

ηt−1

)
(R(z)−R(xt))+

T

∑
t=1

(Ht(xt)−Ht(xt+1)). (3.2)

3.1 Sublinear Regret with Relative Lipschitz Functions
In the following theorem we formally state our sublinear O(

√
T ) regret bound of

FTRL in T rounds in the setting where the cost functions are Lipschitz continuous

relative to the regularizer function used in the FTRL method. The proof boils down

to bounding the terms Ht(xt)−H(xt+1) from the Strong FTRL Lemma by (roughly)

L2ηt−1/2. We do so by combining the optimality conditions from the definition of

the iterates in Algorithm 1 with the L-Lipschitz continuity relative to R of the loss
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functions.

Theorem 6. Let {xt}t≥1 be defined as in Algorithm 1 and suppose ft is L-Lipschitz

continuous relative to R for all t ≥ 1. Let z ∈ X and let K ∈ R be such that

K ≥ R(z)−R(x1). Then,

RegretT (z)≤
K
ηT

+
T

∑
t=1

L2ηt−1

2
, ∀T > 0.

In particular, if ηt :=
√

K/(L
√

t +1) for each t ≥ 0, then RegretT (z)≤ 2L
√

K(T +1).

We notice that here the step size is adaptive. It does not depend on the horizon

T but the current iteration t. In this way, the regret bound can hold for any horizon

T without knowing it in advance. However, the step size has a dependence on the

radius K and relative Lipschitz continuity parameter L. In practice we may not

know these parameters and we may need to search for the proper step size.

With the Strong FTRL Lemma, to derive regret bounds we can focus on bound-

ing the difference in cost between consecutive iterates. In this section we will prove

the sublinear regret bound for FTRL from Theorem 6. In the next lemma we give

a bound on these costs based on the Bregman divergence of the FTRL regularizer,

this time relying on convexity (but not on much more). Loosely saying, the first

claim of the next lemma follows from the optimality conditions of the iterates of

FTRL and the second follows from the subgradient inequality.

Lemma 7. Let {xt}t≥1 and {Ft}t≥0 be defined as in Algorithm 1. Then, for each

t ∈ N there is pt ∈ NX (xt) such that −pt − 1
ηt−1

∇R(xt) ∈ ∂Ft−1(xt), where η0 ∈ R
can be any positive constant. Moreover, this implies

Ft−1(xt)−Ft−1(xt+1)≤
1

ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
.

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have xt ∈ argminx∈X (Ft−1(x)+
1

ηt−1
R(x)). By the optimality conditions for convex programs, we have

∂

(
Ft−1 +

1
ηt−1

R
)
(xt)∩ (−NX (xt)) 6=∅.

Since ∂

(
Ft−1 +

1
ηt−1

R
)
(xt)= ∂Ft−1(xt)+

1
ηt−1

∇R(xt), the above shows there is pt ∈
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NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂Ft−1(xt).

Using the subgradient inequality (1.1) with the above subgradient yields,

Ft−1(xt)−Ft−1(xt+1)

≤−〈pt ,xt − xt+1〉− 1
ηt−1
〈∇R(xt),xt − xt+1〉,

≤− 1
ηt−1
〈∇R(xt),xt − xt+1〉, (by the definition of normal cone),

= 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
,

where in the last equation we used that, by definition of the Bregman divergence,

DR(xt+1,xt)=R(xt+1)−R(xt)−〈∇R(xt),xt+1−xt〉 and, thus,−〈∇R(xt),xt−xt+1〉=
R(xt+1)−R(xt)−DR(xt+1,xt).

Proof of Theorem 6. For each t ≥ 0 let Ht be defined as in the Strong FTRL Lemma

and fix t ≥ 0. We have

Ht(xt)−Ht(xt+1) = Ft(xt)−Ft(xt+1)+
1
ηt
(R(xt)−R(xt+1)). (3.3)

Using Ft = Ft−1 + ft together with Lemma 7 we have

Ft(xt)−Ft(xt+1) = Ft−1(xt)−Ft−1(xt+1)+ ft(xt)− ft(xt+1),

≤ 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
+ ft(xt)− ft(xt+1).

Plugging the above inequality into (3.3) yields

(3.3)≤ ft(xt)− ft(xt+1)−
DR(xt+1,xt)

ηt−1
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1)). (3.4)

Since ft is L-relative Lipschitz continuous with respect to R, we apply subgradi-

ent inequality with (2.4) followed by the the arithmetic-geometric mean inequality
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√
αβ ≤ (α +β )/2 with α := L2ηt−1 and β := 2DR(xt+1,xt)/ηt−1 to get

ft(xt)− ft(xt+1)−
DR(xt+1,xt)

ηt−1
≤ 〈gt ,xt − xt+1〉−

DR(xt+1,xt)

ηt−1
, (subgradient inequality)

(2.4)
≤ L

√
2DR(xt+1,xt)−

DR(xt+1,xt)

ηt−1
,

≤ L2ηt−1

2
.

Applying the above on (3.4) yields

(3.4)≤ L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1)).

Plugging the above inequality into the the Strong FTRL Lemma together with

R(x1)≤ R(xt) for each t ≥ 1 (which follows by the definition of x1) yields

RegretT (z)≤
T

∑
t=0

( 1
ηt
− 1

ηt−1

)
(R(z)−R(xt)+R(xt)−R(xt+1))+

T

∑
t=1

L2ηt−1

2
,

=
T

∑
t=0

( 1
ηt
− 1

ηt−1

)
(R(z)−R(xt+1))+

T

∑
t=1

L2ηt−1

2
,

≤ 1
ηT

(R(z)−R(x1))+
T

∑
t=1

L2ηt−1

2
≤ K

ηT
+

T

∑
t=1

L2ηt−1

2
.

If we set ηt :=
√

2K/(L
√

t +1) and since ∑
T
t=1

1√
t ≤ 2

√
T by Lemma 25 in Ap-

pendix A.1, then

RegretT (z)≤L
√

K(T +1)+
L
√

K
2

T

∑
t=1

1√
t
≤L
√

K(T +1)+L
√

KT ≤ 2L
√

K(T +1).

3.1.1 Dual Averaging

FTRL is a cornerstone algorithm in OCO, but sometimes it is not practical. Each

iterate requires exact minimization of the loss functions plus the regularizer which

might not have always a closed form solution. A notable variation of FTRL that

mitigates this problem is the online DA method whose offline version is due to
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Nesterov [21]. In each iteration, DA picks a point from X that minimizes the sum

of past subgradients (scaled by the step size) plus a FTRL regularizer R. Formally,

for real convex functions { ft}t≥1 on X , the online DA method computes iterates

{xt}t≥1 such that

xt+1 ∈ argmin
x∈X

(
ηt

t

∑
i=1
〈gi,x〉+R(x)

)
∀t ≥ 0, (3.5)

where gt ∈ ∂ ft(xt) for each t ≥ 1.

It is well-known that the DA algorithm reduces to FTRL applied to the linearized

functions {t̃t}t≥1 given by t̃t := 〈gt , ·〉 for each t ∈ N (for details see Hazan [12,

Lemma 5.4]). This reduction obviously preserves the property of being Lipschitz

continuous since the gradient of t̃t is gt everywhere. A natural idea would be to use

this same reduction in the relative setting. Unfortunately, this reduction does not

preserve the property of being relative Lipschitz! Luckily, our proof only requires

a weaker condition: being “relative Lipschitz” at the particular point xt . Namely,

the relative L-Lipschitzness (see (2.4)) of ft implies 〈∇t̃t(xt),xt−y〉= 〈gt ,xt−y〉 ≤
L
√

2DR(y,xt) for all y ∈X . That is all we need for the proof of Theorem 6 to go

through, although we did state the theorem with this exact condition for the sake

of simplicity. This discussion leads to the following corollary of Theorem 6.

Corollary 8. Let {xt}t≥1 be defined as in (3.5) and suppose ft is L-Lipschitz con-

tinuous relative to R for all t ≥ 1. Let z∈X and let K ∈R be such that K ≥ R(z)−
R(x1). If ηt :=

√
2K/(L

√
t +1) for all t ≥ 1, then RegretT (z)≤ 2L

√
K(T +1).

3.2 Logarithmic Regret with Relative Strongly Convex
Functions

Hazan et al. [14] showed that if the cost functions are not only Lipschitz continuous

but strongly convex as well, then FTL attains logarithmic regret. Similarly, in this

section we show that if the cost functions are relative Lipschitz continuous and

relative strongly convex, both relative to the same fixed function, then FTL suffers

regret at most logarithmic in the number of rounds. A formal theorem is given

below.
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Theorem 9. Let {xt}t≥1 be defined as in Algorithm 1 with R := 0. Assume that ft
is L-Lipschitz continuous and M-strongly convex relative to a differentiable convex

function h : D → R for each t ≥ 1. Then, for all z ∈X ,

RegretT (z)≤
L2

2M
(log(T )+1), ∀T > 0.

The next lemma strengthens the bound from Lemma 7 in the case where the

loss functions are relative strongly convex with respect to a fixed reference func-

tion. We further simplify matters by taking R = 0, that is, regularization is not

needed for FTRL in the relative strongly convex case.

Lemma 10. Let {xt}t≥1 be defined as in Algorithm 1 with R := 0. Moreover, let

h : D → R be a differentiable convex function such that ft is M-strongly convex

relative to h for each t ≥ 1. Then, for all T ≥ 1,

Ft−1(xt)−Ft−1(xt+1)≤−(t−1)MDh(xt+1,xt).

Proof. Let t ≥ 1. Note that Ft−1 is (t−1)M-strongly convex relative to R since it

is the sum of t− 1 functions that are each M-strongly convex relative to R. Addi-

tionally, let pt ∈ NX (xt) be as given by Lemma 7. By this lemma we have −pt ∈
∂Ft−1(xt). Thus, using inequality (2.3) from the definition of relative strong con-

vexity with this subgradient yields

Ft−1(xt)−Ft−1(xt+1)≤−〈pt ,xt − xt+1〉− (t−1)MDh(xt+1,xt).

By the definition of normal cone we have −〈pt ,xt − xt+1〉 = 〈pt ,xt+1− xt〉 ≤ 0,

which yields the desired inequality.

Proof of Theorem 9. For each t ≥ 0 let Ht : X → R be defined as in the Strong

FTRL Lemma and fix t ≥ 0. Since R = 0, we have Ht = Ft . This together with

Lemma 10 yields

Ht(xt)−Ht(xt+1) = Ft(xt)−Ft(xt+1) = Ft−1(xt)−Ft−1(xt+1)+ ft(xt)− ft(xt+1)

≤−(t−1)MDh(xt+1,xt)+ ft(xt)− ft(xt+1). (3.6)
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Let gt ∈ ∂ ft(xt). Since ft is L-Lipschitz continuous and M-strongly convex, both

relative to h, we have

ft(xt)− ft(xt+1)
(2.3)
≤ 〈gt ,xt−xt+1〉−MDh(xt+1,xt)

(2.4)
≤ L

√
2DR(xt+1,xt)−MDR(xt+1,xt).

Applying the above to (3.6) together with the fact that
√

αβ ≤ (α + β )/2 with

α := L2/(Mt) and β := 2tMDR(xt+1,xt) yields

Ht(xt)−Ht(xt+1)≤ L
√

2DR(xt+1,xt)− tMDR(xt+1,xt)≤
L2

2Mt
.

Finally, plugging the above inequality into the Strong FTRL Lemma (with R = 0)

gives

RegretT (z)≤
T

∑
t=0

(Ht(xt)−Ht(xt+1))≤
L2

2M

T

∑
t=1

1
t
≤ L2

2M
(log(T )+1).

By the first order optimization condition and the definition of relative strong

convexity, for any y ∈X and a minimizer x∗ of f , we have

f (y)− f (x∗)≥MDR(y,x∗).

At the same time, by definition of relative Lipschitz continuity, we have

f (y)− f (x∗)≤ L
√

2DR(x∗,y).

This means that if the function satisfies relative Lipschitz continuity and relative

strong convexity with the same reference function at the same time, it has a lower

bound of order O(DR(y,x∗)) and an upper bound of order O(
√

DR(x∗,y)). If the

Bregman divergence between y and x∗ goes to infinity, the lower bound will even-

tually exceed the upper bound and these two conditions cannot hold concurrently.

Therefore, relative Lipschitz continuity and relative strong convexity can only co-

exist in a bounded domain where the Bregman divergence does not explode.
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3.3 Sublinear Regret with Composite Loss Functions
An important consideration for applications is a variant of OCO in which the loss

functions are composite [7, 26]. More specifically, in this case we have a known

“extra regularizer” Ψ, a (not necessarily differentiable) convex function, and add it

to the loss functions. The goal is to induce some kind of structure in the iterates,

such as adding `1-regularization to promote sparsity. Note that OCO algorithms

would still apply in this setting by replacing the loss functions ft with ft +Ψ at

each round t. However, in this case we are not exploiting the fact that the function

Ψ is known. In the case of the relative setting, for example, it may be the case

that the loss functions ft are relative Lipschitz-continuous with respect to a certain

function R, while Ψ is not.

In this subsection we extend the results from Chapter 3.1 to the case where the

loss functions are composite. Specifically, there is a known non-negative convex

function Ψ : X → R+ (sometimes called extra regularizer) which is subdifferen-

tiable on X and at round t the loss function presented to the player is ft +Ψ.

Usually Ψ is a simple function which is easy to optimize over (such as the `1-

norm). Thus, although ft +Ψ might not preserve relative Lipschitz continuity of

ft , one might still hope to obtain good regret bounds in this case. We shall see that

FTRL does not need any modifications to enjoy of good theoretical guarantees in

this setting. Yet, its analysis in the composite case will allow us to derive regret

bounds for the regularized dual averaging method due to Xiao [26].

In the composite case we measure the performance of an OCO algorithm by its

composite regret (against a point z ∈X ) given by

RegretΨT (z) :=
T

∑
t=1

( ft(xt)+Ψ(xt))− inf
z∈X

T

∑
t=1

( ft(z)+Ψ(z)), ∀T > 0. (3.7)

In the case of FTRL, practically no modifications to the algorithm are needed.

Namely, the update of Algorithm 1 becomes

xt+1 ∈ argmin
x∈X

( t

∑
i=1

fi(x)+ tΨ(x)+
1
ηt

R(x)
)
, ∀t ≥ 0.

We do make the additional assumption that Ψ(x1) = 0, that is, x1 minimizes Ψ and
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tha latter has minimum value of 0. In practice one has some control on Ψ, so this

assumption is not too restrictive. The next theorem shows that we can recover the

regret bound from Theorem 6 for the composite setting even if Ψ is not relative

Lipschitz-continuous with respect to the FTRL regularizer.

Theorem 11. Let Ψ : X →R+ be a nonnegative convex function such that {xt}t≥1

as given as in Algorithm 1 are such that Ψ(x1) = 0. Assume that ft is L-Lipschitz

continuous relative to R for all t ≥ 1. Let z ∈X and K ∈ R be such that K ≥
R(z)−R(x1). Additionally, assume Ψ(x1) = 0. Then,

RegretΨT (z)≤
2K
ηT

+
T

∑
t=1

L2ηt−1

2
, ∀T > 0.

In particular, if ηt :=
√

2K/(L
√

t +1) for each t ≥ 1, then RegretΨT (z)≤ 2L
√

K(T +1)

The proof is largely identical to the proof of Theorem 6. One of the main

differences in the analysis is the following version of Lemma 7 tweaked for the

composite setting. It follows by adding (t−1)Ψ to Ft−1 in the proof of the original

lemma and using the properties of the subgradient. We give the full proof for the

sake of completeness.

Lemma 12. Let Ψ : X → R+ be a nonnegative convex function such that {xt}t≥1

as given as in Algorithm 1 are such that Ψ(x1) = 0. Then, for each t ∈ N there is

pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂

(
Ft−1 +(t−1)Ψ

)
(xt),

and the above implies

Ft−1(xt)−Ft−1(xt+1)+(t−1)(Ψ(xt)−Ψ(xt+1))

≤ 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
(t−1).

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have

xt ∈ argminx∈X (Ft−1(x)+ (t− 1)Ψ(x)+ 1
ηt−1

R(x)). By the optimality conditions
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for convex programs, we have

∂

(
Ft−1 +(t−1)Ψ(x)+ 1

ηt−1
R
)
(xt)∩ (−NX (xt)) 6=∅.

Since ∂ (Ft−1+(t−1)Ψ(x)+ 1
ηt−1

R)(xt) = ∂ (Ft−1+(t−1)Ψ(x))(xt)+
1

ηt−1
∇R(xt),

the above shows there is pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂ (Ft−1 +(t−1)Ψ(x))(xt).

Using the subgradient inequality (1.1) with the above subgradient yields,

Ft−1(xt)+(t−1)Ψ(xt)−Ft−1(xt+1)− (t−1)Ψ(xt+1)

≤−〈pt ,xt − xt+1〉− 1
ηt−1
〈∇R(xt),xt − xt+1〉,

≤− 1
ηt−1
〈∇R(xt),xt − xt+1〉, (by the definition of normal cone)

= 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
,

where in the last equation we used that, by definition of the Bregman divergence,

DR(xt+1,xt)=R(xt+1)−R(xt)−〈∇R(xt),xt+1−xt〉 and, thus,−〈∇R(xt),xt−xt+1〉=
R(xt+1)−R(xt)−DR(xt+1,xt).

Now we are in position to prove Theorem 11.

Proof of Theorem 11. We proceed in a way extremely similar to the proof of The-

orem 6, but in place of the standard FTRL Lemma we use its composite version as

in (3.2).

For each t ≥ 0 let Ht be define das in the (composite) Strong FTRL Lemma so

that Ht = ∑
t
i=1 fi + tΨ+ 1

ηt
R and fix t ≥ 0. In this case we have

Ht(xt)−Ht(xt+1) = Ft(xt)−Ft(xt+1)+ t(Ψ(xt)−Ψ(xt+1))+
1
ηt
(R(xt)−R(xt+1)).
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Using Ft = Ft−1 + ft together with Lemma 12 we have

Ft(xt)−Ft(xt+1)+ t(Ψ(xt)−Ψ(xt+1))

≤ 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1,xt)

)
+ ft(xt)− ft(xt+1)+Ψ(xt)−Ψ(xt+1).

Proceeding as in the proof of Theorem 6 (with the addition of a Ψ(xt)−Ψ(xt+1)

term) we have

Ht(xt)−Ht(xt+1)≤
L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1))+Ψ(xt)−Ψ(xt+1).

When summing over t ∈ {1, . . . ,T}, the terms Ψ(xt)−Ψ(xt+1) telescope so that,

since x1 minimizes Ψ, we have

T

∑
t=1

(Ψ(xt)−Ψ(xt+1) = Ψ(x1)−Ψ(xT+1)≤ 0.

Therefore, the remainder of the proof follows as in the proof of Theorem 6.

3.3.1 Regularized Dual Averaging

As previously discussed, applying OCO algorithms such as dual averaging in an

out-of-the-box fashion when the loss functions are composite case does not exploit

the structure of the extra-regularization given by Ψ and may have poor performance

in practice. For example, McMahan [18] shows that applying DA in the composite

case with Ψ := ‖·‖1 does not yield sparse solutions. Xiao [26] proposed the regu-

larized dual averaging (RDA) method to solve this issue. The algorithm is identical

to DA but it does not linearize the function Ψ. Formally, the initial iterate x1 is

in argminx∈X (R(x) and is such that Ψ(x1) = 0, that is, x1 minimizes Ψ. For the

following rounds, RDA computes

xt+1 ∈ argmin
x∈X

( t

∑
i=1
〈gi,x〉+ tΨ(x)+

1
ηt

R(x)
)

∀t ≥ 1. (3.8)

With an argument analogous to the one made in Chapter 3.1.1, we can write RDA

as an instance of FTRL with composite loss functions and obtain the following
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corollary of Theorem 11.

Corollary 13. Let Ψ : Rn→ R+ be a nonnegative convex function. Let {xt}t≥1 be

defined as in (3.8) and assume Ψ(x1) = 0. Moreover, suppose ft is L-Lipschitz con-

tinuous relative to R for all t ≥ 1. Let z∈X and let K ∈R be such that K ≥ R(z)−
R(x1). If ηt :=

√
2K/(L

√
t +1) for all t ≥ 1, then RegretΨT (z)≤ 2L

√
K(T +1).
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Chapter 4

Dual Stabilized-Online Mirror
Descent

We introduced classical mirror descent in Chapter 1.3. Mirror descent is a general-

ization of standard gradient method. It describes many popular algorithms like the

projected gradient descent method and the exponentiated gradient descent method.

Its convergence rate can have a better dependence on the dimensionality of some

problems than normal gradient descent method [6, Chapter 4]. Recently, Orabona

and Pál [22] showed that OMD with a dynamic learning rate may suffer linear re-

gret. (A dynamic learning rate is useful when we do not known the number of

iterations ahead of time.) Moreover, this can happen even in simple and well-

studied scenarios such as in the problem of prediction with expert advice, which

corresponds to OMD equipped with negative entropy as a mirror map. In general,

they showed that this may happen in cases where the Bregman divergence (with

respect to the mirror map chosen) is not bounded over the entire feasible set. To

resolve this issue, Fang et al. [9] proposed a modified version of OMD called dual-

stabilized online mirror descent (DS-OMD). In contrast to classical OMD, the regret

bounds for the dual-stabilized version depend only on the Bregman divergence be-

tween the feasible set and the initial iterate.

We formally describe the DS-OMD method in Algorithm 3. Compared to OMD,

DS-OMD adds an extra step in the dual space to mix the current dual iterate with

the dual of the initial point. This step at iteration t is controlled by a stabilization
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parameter γt and it can be seen as a way to “stabilize” the algorithm in the dual

space. The proof of this chapter will build upon the framework in Fang et al.

Algorithm 3 Dual-Stabilized Online Mirror Descent
Require: Stabilization coefficient γt and an initial iterate x1 ∈X .

for t = 1,2, . . . do
Observe ft and suffer cost ft(xt)
Compute gt ∈ ∂ ft(xt)
x̂t := ∇Φ(xt)
ŵt+1 := x̂t −ηtgt

ŷt+1 := γtŵt+1 +(1− γt)x̂1
yt+1 := ∇Φ∗(ŷt+1)
Compute xt+1 ∈ argminx∈X DΦ(x,yt+1) = Φ(x)−Φ(yt+1)−〈∇Φ(yt+1),x−

yt+1〉

[9]. Thus, let us state inequality (4.9) and Claim 4.2 (without substituting exactly

value of γt) from Fang et al. [9] at the beginning, which will appear multiple times

throughout this chapter, respectively as:

Claim 14. If γt = ηt+1/ηt ∈ (0,1] for each t ≥ 1, then

ft(xt)− ft(z)≤
1
ηt
(DΦ(xt ,wt+1)−DΦ(z,wt+1)+DΦ(z,xt)).

Claim 15. If γt ∈ (0,1] for all t ≥ 1, then,

1
ηt
(DΦ(xt ,wt+1)−DΦ(z,wt+1)+DΦ(z,xt))

≤ DΦ(xt ,wt+1)

ηt
+

1
ηt

(( 1
γt
−1
)

DΦ(z,x1)−
1
γt

DΦ(z,xt+1)+DΦ(z,xt)

)
.

Throughout this chapter, let {xt}t≥1 and {ŵt}t≥1 be defined as in Algorithm 3,

and define

wt := ∇Φ
∗(ŵt), ∀t ≥ 1.
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4.1 Sublinear Regret with Relative Lipschitz Functions
In this subchapter, we give a regret bound for DS-OMD when the cost functions

are all Lipschitz continuous relative to the mirror map Φ. In this setting, if we set

the stabilization coefficients to be γt := ηt+1/ηt and step size O(1/
√

t), DS-OMD

obtains sublinear regret. This is formally stated in the following theorem.

Theorem 16. Let {xt}t≥1 be defined as in Algorithm 3 with γt := ηt+1/ηt for each

t ≥ 1. Assume that ft is L-Lipschitz continuous relative to Φ for all t ≥ 1. Let

z ∈X and K ∈ R be such that K ≥ DΦ(z,x1). Then,

RegretT (z)≤
K

ηT+1
+

T

∑
t=1

ηtL2

2
, ∀T > 0.

In particular, if ηt :=
√

K/L
√

t for each t ≥ 1, then RegretT (z)≤ 2L
√

K(T +1).

To prove the above theorem, we need to use Theorem 4.1 in Fang et al. [9].

This theorem is analogous to the bound given in the analysis of classic OMD given

by Bubeck [6, Theorem 4.2].

Theorem 17 (Fang et al. [9, Theorem 4.1]). If γt := ηt+1/ηt for each t ≥ 1, then

RegretT (z)≤
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+

DΦ(z,x1)

ηT+1
, ∀T > 0.

Now we are ready to use Theorem 17 to prove Theorem 16.

Proof of Theorem 16. We first need to bound the terms DΦ(xt ,wt+1) for each t ≥ 1.

Fix t ≥ 1. By the three-point identity for Bregman divergences (see (4)),

DΦ(xt ,wt+1) =−DΦ(wt+1,xt)+ 〈∇Φ(xt)−∇Φ(wt+1),xt −wt+1〉. (4.1)

From the definition of the iterates in Algorithm 3, we have ηtgt =∇Φ(xt)−∇Φ(wt+1).

Thus,

(4.1) =−DΦ(wt+1,xt)+ηt〈gt ,xt −wt+1〉
(2.4)
≤ −DΦ(wt+1,xt)+ηtL

√
2DΦ(wt+1,xt)≤

η2
t L2

2
, (4.2)
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where first inequality is from (2.4) ( since ft is Lipschitz continuous relative to

Φ) and the second inequality comes from the fact that
√

αβ ≤ (α + β )/2 with

α := η2
t L2 and β := DΦ(wt+1,xt). Plugging the above in Theorem 17, we get

RegretT (z)≤
T

∑
t=1

ηtL2

2
+

DΦ(z,x1)

ηT+1
≤

T

∑
t=1

ηtL2

2
+

K
ηT+1

.

Setting ηt :=
√

K/L
√

t for each t ≥ 1 and by using Lemma 25 from Appendix A.1we

have

RegretT (z)≤
L2

2
·
√

K2
√

T
L

+K
L
√

T +1√
K

≤ 2L
√

K(T +1).

If we set each ft to be a fixed function f and take average of all iterates, then we

get the following convergence rate for classical convex optimization as a corollary.

Corollary 18. Let Φ be a mirror map for X and let f : X → R be a con-

vex L-Lipschitz-continuous function relative to Φ. Let {xt}t≥1 be given as in Al-

gorithm 3 with loss functions ft := f , step sizes ηt :=
√

K/L
√

t for some K ≥
supz∈X DΦ(z,x1), and stabilization parameter γt := ηt+1/ηt . If x∗ ∈X is a mini-

mizer of f , then,

f

(
1
T

T

∑
t=1

xt

)
− f (x∗)≤ 2L

√
2K√

T
.

This recovers the same bound up to constant 4
√

2/3 in Theorem 4.3 in Lu [15],

if we take k = T −1 and ti =
√

K√
T L

for i≥ 0 therein.

4.2 Logarithmic Regret with Relative Strongly Convex
Functions

In Chapter 3.2 we showed that FTRL suffers at most logarithmic regret when the

loss functions are Lipschitz continuous and strongly convex, both relative to the

same fixed reference function. Similarly, we show that OMD suffers at most log-

arithmic regret if we have Lipschitz continuity and strong convexity, both relative

to the mirror map Φ. Interestingly, in this case the dual-stabilization step can be

skipped (that is, we can use γt := 1 for all t) and Algorithm 3 boils down to classic
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OMD.

Theorem 19. Let {xt}t≥1 be given as in Algorithm 3 with γt := 1 for all t ≥ 1.

Assume that ft is L-Lipschitz continuous and M-strongly convex relative to Φ for

all t ≥ 1. If z ∈X and ηt =
1

tM for each t ≥ 1, then,

RegretT (z)≤
L2

2M
(logT +1), ∀T > 0.

The first step in the proof is the following claim given by modifying Claims 14

and 15 and combining them together.

Claim 20. Assume that γt = 1 for all t ≥ 1, then

ft(xt)− ft(z)≤
1
ηt

(
DΦ(xt ,wt+1)−DΦ(z,xt+1)+DΦ(z,xt)

)
−MDΦ(z,xt).

Proof of Claim 20. This proof largely follows the structure of the proof of Claim

14. First, instead of using subgradient inequality, we use the definition of relative

strong convexity and get

ft(xt)− ft(z)≤ 〈gt ,xt − z〉−MDΦ(z,xt).

By proceeding as in the proof of Claim 14 but adding the extra term −MDΦ(z,xt)

term we get

ft(xt)− ft(z)≤
1
ηt

(
DΦ(xt ,wt+1)−DΦ(z,wt+1)+DΦ(z,xt)

)
−MDΦ(z,xt).

Then we apply Claim 15 with γt = 1 to get the desired inequality.

The next step in the proof of the logarithmic regret bound is to sum Claim 20 over
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t, yielding

T

∑
t=1

(
ft(xt)− ft(z)

)
≤

T

∑
t=1

DΦ(xt ,wt+1)

ηt
+

T

∑
t=2

((
1
ηt
− 1

ηt−1

)
DΦ(z,xt)−MDΦ(z,xt)

)
+

1
η1

DΦ(z,x1)−
1

ηT
DΦ(z,xT+1)−MDΦ(z,x1), (by Claim 20)

≤
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+

T

∑
t=2

((
1
ηt
− 1

ηt−1

)
DΦ(z,xt)−MDΦ(z,xt)

)
. (η1 = 1/M)

Since ηt =
1

Mt , we have

T

∑
t=2

((
1
ηt
− 1

ηt−1

)
DΦ(z,xt)−MDΦ(z,xt)

)
=

T

∑
i=2

(
MDΦ(z,xt)−MDΦ(z,xt)

)
= 0.

We have already shown that DΦ(xt ,wt+1)≤ η2
t L2

2 in (4.2), so

RegretT (z)≤
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+

T

∑
i=2

((
1
ηt
− 1

ηt−1

)
DΦ(z,xt)−MDΦ(z,xt)

)
,

≤
T

∑
t=1

ηtL2

2
=

L2

2M

T

∑
t=1

1
t
≤ L2

2M
(logT +1).

The last step comes from upper bound of the harmonic series.

4.3 Sublinear Regret for DS-OMD with Extra
Regularization

Following the notation from Chapter 3.3, we let Ψ : X → R+ denote the extra

regularizer, a nonnegative convex function. We also assume Ψ is minimized at

x1 with value 0 and use composite regret to measure the performance. The only

modification we need to make to Algorithm 3 is to change the projection step of

the algorithm to

xt+1 = argmin
x∈Rn

(
DΦ

(
x,yt+1

)
+ηt+1Ψ(x)

)
. (4.3)
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Here we minimize over Rn instead of over X since we can introduce the constraint

of the points lying in X by adding to Ψ the indicator function of X . That is, by

adding to Ψ the function

δX (x) :=

0 if x ∈X ,

+∞ otherwise,
∀x ∈ Rn.

In the remainder of this section we denote by ΠΦ
ηt+1Ψ

(yt+1) the point computed by

the right-hand side of (4.3). If we pick this projection coefficient αt carefully, we

can get O(
√

T ) regret, as specified by the next theorem.

Theorem 21. Let {xt}t≥1 be given as in Algorithm 3 with composite updates and

with parameters γt := ηt+1/ηt for each t ≥ 1. Assume that Ψ(x1) = 0 and that ft
is L-Lipschitz continuous relative to Φ for all t ≥ 1. Let z ∈X and K ∈R be such

that K ≥ DΦ(z,x1). Then,

RegretΨT (z)≤
T

∑
t=1

ηtL2

2
+

K
ηT+1

, ∀z ∈X ,∀T > 0.

In particular, for ηt :=
√

K/L
√

t for each t ≥ 1, then RegretΨT (z)≤ 2L
√

K(T +1).

The analysis hinges on the following generalization of [6, Lemma 4.1], which

can be thought as a “pythagorean Theorem” for Bregman projections.

Lemma 22. Let x ∈ Rn, y ∈D◦, and set ȳ := ΠΦ
αt Ψ

(y). If ȳ ∈D◦, then

DΦ(x, ȳ)+DΦ(ȳ,y)≤ DΦ(x,y)+αt(Ψ(x)−Ψ(ȳ)).

Proof of Lemma 22. By the optimality conditions of the projection, we have ∇Φ(y)−
∇Φ(ȳ)∈ ∂ (αtΨ)(ȳ). Using the three-point identity of Bregman divergences (see (4))

and the subgradient inequality, we get

DΦ(x, ȳ)+DΦ(ȳ,y)−DΦ(x,y) = 〈∇Φ(y)−∇Φ(ȳ),x− ȳ〉 ≤ αt(Ψ(x)−Ψ(ȳ)).

Rearranging yields the desired inequality.

We are now ready to prove Theorem 21.
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Proof of Theorem 21. To prove the theorem, we just need to show that Theorem 17

still holds (with respect to the composite regret) in the algorithm with composite

projections. We modify Claims 14 and 15 to get the following claim.

Claim 23.

ft(xt)− ft(z)

≤ DΦ(xt ,wt+1)

ηt
+

(
1

ηt+1
− 1

ηt

)
DΦ(z,x1)+

DΦ(z,xt)

ηt
− DΦ(z,xt+1)

ηt+1
+(Ψ(z)−Ψ(xt+1)).

Proof of Claim 23. Claim 14 gives us the following inequality:

ft(xt)− ft(z)≤
1
ηt
(DΦ(xt ,wt+1)−DΦ(z,wt+1)+DΦ(z,xt)).

Then we just need to modify Claim 15 to bound the right side of the above inequal-

ity. Using Lemma 22, we have

DΦ(z,yt+1)−DΦ(xt+1,yt+1)≥ DΦ(z,xt+1)+αt(Ψ(xt+1)−Ψ(z)).

Then we substitute the step DΦ(z,yt+1)−DΦ(xt+1,yt+1)≥DΦ(z,xt+1) in the orig-

inal proof of Claim 15 in Fang et al. [9] with the above inequality plus the extra

regularization term and Claim 23 follows.

38



Now the regret is bounded by

RegretΨT (z)

=
T

∑
t=1

(
ft(xt)+Ψ(xt)− ft(z)−Ψ(z)

)
,

=
T

∑
t=1

((
ft(xt)− ft(z)

)
+
(

Ψ(xt)−Ψ(z)
))

,

≤
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+ sup

z∈X

DΦ(z,x1)

ηT+1
+

T

∑
t=1

(Ψ(xt)−Ψ(xt+1)),

=
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+ sup

z∈X

DΦ(z,x1)

ηT+1
+Ψ(x1)−Ψ(xT+1),

≤
T

∑
t=1

DΦ(xt ,wt+1)

ηt
+ sup

z∈X

DΦ(z,x1)

ηT+1
.

The first inequality follows Claim 23 and the last step comes from the assumption

that x1 is the minimizer of Ψ. This shows Theorem 17 holds as desired and then

the proof of Theorem 21 follows as in Chapter 4.1.

Similarly, by setting all ft to a fixed function f and taking average we get the

following corollary.

Corollary 24. Consider a convex function f and let x∗ be a minimizer of f . Let

Φ be a differentiable strictly convex mirror map such that X ⊆ D◦. Assume that

f is L-Lipschitz continuous to Φ and there exists non-negative K such that K ≥
DΦ(x∗,x1). Let {ηt}t≥1 be a sequence of step sizes. If we pick step size ηt =

1√
t ,

αt = ηt+1 and stabilization coefficient γt = ηt+1/ηt , then we have convergence rate

( f +Ψ)

(
1
T

T

∑
t=1

xt

)
− ( f +Ψ)(x∗)≤ 2L

√
2K√

T
.
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Chapter 5

Conclusion and Future Work

5.1 Conslusion
In this thesis we begin with an introduction of OCO framework and discussion of

the upper bounds of two main OCO algorithms, FTRL and OMD. We then extend the

classical sublinear regret bound to the more generalized relative setting proposed

by Lu [15]. The results hold in the anytime setting in which we do not know the

number of rounds/iterations beforehand. The main contribution of this work is

that we gave logarithmic regret bounds for both algorithms when the functions are

relatively strongly convex, analogous to the results known in the classical setting.

Finally, we extend our results to the setting of composite cost functions, which is

pervasive in practice. These novel results open up the possibility of a new range

of applications for OCO algorithms and may allow for new analysis for known

problems with better dependence on the instance’s parameters.

5.2 Future Work
There are a few interesting directions of future work. The first would be to investi-

gate the connections among the different notions of relative smoothness, Lipschitz

continuity, and strong convexity in the literature. By doing this, we can acquire

deeper understanding of these conditions giving favourable regret bounds.

Another direction is to investigate systematic ways of choosing a regulariz-

40



er/mirror map for any given optimization problem. This could lead to novel algo-

rithms of important applications.
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Appendix A

Supporting Materials

A.1 Arithmetic Inequalities
Lemma 25. Let {at}t≥1 be a non-negative sequence with a1 > 0. Then,

T

∑
t=1

at√
∑

t
i=1 ai

≤ 2

√
T

∑
t=1

at , ∀T ∈ N.

Proof. The proof is by induction on T . The statement holds trivially for T = 1. Let

T > 1 and define s := ∑
T
t=1 at . By the induction hypothesis,

T

∑
t=1

at√
∑

t
i=1 ai

≤ 2

√
T−1

∑
t=1

at +
aT√

∑
T
i=1 ai

= 2
√

s−aT +
aT√

s
.

Finally, note that

2
√

s−aT +
aT√

s
≤ 2
√

s ⇐⇒ 2
√

s(s−aT )≤ 2s−aT ⇐⇒ 4s(s−aT )≤ (2s−aT )
2

⇐⇒ 4s2−4saT ≤ 4s2−4saT +a2
T ⇐⇒ 0≤ a2

T .

45


	Abstract
	Lay Summary
	Preface
	Table of Contents
	Glossary
	Acknowledgments
	†ô„"
	1 Introduction
	1.1 Lipschitzness and Strong Convexity
	1.2 Follow The Regularized Leader
	1.3 Mirror Descent

	2 Related Work
	2.1 A New Descent Lemma
	2.2 Relative Lipschitzness
	2.3 Other Related Work

	3 Follow the Regularized Leader
	3.1 Sublinear Regret with Relative Lipschitz Functions
	3.1.1 Dual Averaging

	3.2 Logarithmic Regret with Relative Strongly Convex Functions
	3.3 Sublinear Regret with Composite Loss Functions
	3.3.1 Regularized Dual Averaging


	4 Dual Stabilized-Online Mirror Descent
	4.1 Sublinear Regret with Relative Lipschitz Functions
	4.2 Logarithmic Regret with Relative Strongly Convex Functions
	4.3 Sublinear Regret for DS-OMD with Extra Regularization

	5 Conclusion and Future Work
	5.1 Conslusion
	5.2 Future Work

	Bibliography
	A Supporting Materials
	A.1 Arithmetic Inequalities


